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Abstract

The paper considers a problem of Monte Carlo integration of function that feature ran-
dom variables. It is assumed, that there exists a given sampling plan (a matrix of Nsim

points in Nvar-dimensional space). This sampling plan can be a result of crude Monte
Carlo sampling strategy, or a Latin Hypercube Sample (either random or optimized via
some criterion).

Consider a random vector X with joint probability density function fX(x) and cumu-
lative density function FX(x). Consider also a deterministic function that features the
random vector: g(x). The problem to be solved is the estimation of the following integral
that involves an additional transformation S of function g:

E[S [g(X)]] =

∞∫
−∞

. . .

∞∫
−∞

S [g(x)] dFX (x) (1)

where dFX (x) = fX (x)·dx1 dx2 · · · dxNvar is the infinitesimal probability and where the
particular form of the function S [g (·)] depends on the transformation of interest. A typical
application is the estimation of statistical moments of g. For example, to get the mean
value of g denoted as E[g(·)], one can simply consider S [g()] = g(). In standard Monte
Carlo integration, it is assumed that all the sampling point have been selected with an equal
sampling probability, i.e. 1/Nsim. In such a case, the integration of a function g of a vector
of random variables X over the domain of all random variables can be estimated as an
average over i = 1, . . . , Nsim points with equal weights:

E[S [g(X)]] ≈ 1

Nsim

Nsim∑
i=1

S [g(xi)] (2)

The application may be e.g. in estimation of statistical moments of a function g which is a
frequently encountered problem.

The paper explores the possibility to improve the naive approach in Eq. (2) by consider-
ing unequal weights. These weights are obtained by transforming the points into sampling
probabilities (points within a unit hypercube) and then by constructing the Voronoi tessella-
tion around each point. The volumes of individual cells are then used as weights instead of
equal weight 1/Nsim. Supposedly, this approach could have been considered superior over
Eq. (2) because it can remove inaccuracies stemming from clusters of sampling points.


